

CVE 2025 25567: A
Stack-Based Buffer

Overflow on SoftEtherVPN
Jordan Day, Shanzay Khan, Alexandra Kotsinyan

Introduction

Summary
We found this exploit from the CVE website.
It was a buffer overflow exploit written by
Drake C that was exploitable from a specific
file in SoftEther VPN. We utilize the vpncmd
binary file and give it a crafted input of 0x89
(137 decimal) bytes to overwrite the
instruction pointer (RIP). The vulnerability
exists in the Internat.c file.
​ The vulnerability has been patched
in the stable release and as of writing this,
only exists in the unstable version.

Target: SoftEtherVPN
SoftEther VPN is an open source and
multi-protocol VPN designed to allow users
to create VPN connections and give secure
communication channels for data transfer
via strong encryption. The code is available
to the public, and as such can be analyzed
to look for potential vulnerabilities.

Bug: Stack-Based Buffer
Overflow
There is a vulnerability within a file,
src/Mayaqua/Internat.c, at lines 2458 to
2503. Two functions, UniToInt and
UniToStrForSingleChars, do not have
bounds checking for the tmp variable. This
allows us to create a buffer overflow. By
attacking this, an attacker can overtake the
instruction pointer(RIP), and potentially gain
control of program execution. The bug is run
via the build/vpncmd binary file, which
interacts with code from the src/Mayaqua
folder. This folder contains Internat.c–which
has the two exploitable functions for the bug
as explained above– and Str.c which has

the two functions utilized in Internat.c; ToInti
and ToInt.

Exploit Development
and Execution
We initially began working on creating a
stack diagram and confirming it with the
original CVE writeup using x86_64
machines. We found that the buffer length
was 0x80 (128 in decimal) and that the
register RBX was also on the stack frame
for our entry point, UniToInt. We found that
consistent with the CVE writeup, sending
any more than 0x88 (136 decimal) bytes
would start to overflow RIP, our instruction
pointer.

Program Flow
The general program flow, relevant to our
exploit, is as follows:

1.​ The vpncmd binary receives user
input.

2.​ The input is then processed by
functions in Internat.c

a.​ It first is passed through
UniToInt.

b.​ Then, it is passed through
UniToStrForSingleChars,
returning to UniToInt.

c.​ UniToInt then passes the
input to functions in Str.c.

3.​ Within Str.c, the input is passed
through several functions.

a.​ The first function it is passed
through is ToInti.

b.​ Then, the input is passed to
ToInt, which calls the C
language stdlib function,
strtoul.

A description of each function is as follows:

C/C++‎

C/C++‎

C/C++‎

C/C++‎

●​ UniToInt: Converts a string to an
integer, with error checks to ensure
no null input is given

// Convert a string to an integer
UINT UniToInt(wchar_t *str)
{
​ char tmp[128];
​ // Validate arguments
​ if (str == NULL)
​ {
 ​ ​ return 0;
​ }

​
UniToStrForSingleChars(tmp,
sizeof(tmp), str);

​ return ToInti(tmp);
}

●​ UniToStrForSingleChars: converts
only single-byte characters in the
Unicode string to a char string. Has
a bounds check to ensure values
stay between 0 - 0xff

// Convert only single-byte characters
in the Unicode string to a char string
void UniToStrForSingleChars(char *dst,
UINT dst_size, wchar_t *src)
{
​ UINT i;
​ // Validate arguments
​ if (dst == NULL || src == NULL)
​ {
 ​ return;
​ }

​ for (i = 0;i < UniStrLen(src) +
1;i++)
​ {
 ​ wchar_t s = src[i];
 ​ char d;

 ​ if (s == 0)
 ​ {
 ​ d = 0;
 ​ }
 ​ else if (s <= 0xff)
 ​ {

 ​ d = (char)s;
 ​ }
 ​ else
 ​ {
 ​ d = ' ';
 ​ }

 ​ dst[i] = d;
​ }
}

●​ ToInti: converts a string to a signed
integer

// Convert the string to a signed
integer
int ToInti(char *str)
{
​ // Validate arguments
​ if (str == NULL)
​ {
​ ​ return 0;
​ }
​
​ return (int)ToInt(str);
}

●​ ToInt: converts a string to an integer

// Convert a string to an integer
UINT ToInt(char *str)
{
​ // Validate arguments

if (str == NULL) {
return 0;

}

// Ignore the octal literal
while (true) {
​ if (*str != '0') {
​ ​ break;
​ }
​ if ((*(str + 1) == 'x')
|| (*(str + 1) == 'X')) {
​ ​ break;
​ }
​ str++;
}

C/C++‎

return (UINT)strtoul(str, NULL,
0);

Control of RIP
To get control of RIP, in order for strtoul to
not error out and cause our program to exit,
we must give a valid base-10 integer first.
Then, we fill up the rest of our 0x80 buffer
size (tmp) with ASCII characters (the reason
why we specifically do ASCII characters is
explained below in the “Limitations”
section). The next 8 bytes we send will
overflow the RBX register, which is next on
the stack. Here, we replace RBX with
identifiable dummy characters (that are also
ASCII, explained in “Limitations”), that way
we can easily tell when we’ve overflowed
into RBX.
​ Once we’ve overflowed all of the
bytes in RBX, the next bytes we provide the
program will overwrite into RIP, the
instruction pointer that tells the computer
which instruction to execute next.

Limitations
We see two primary paths to a meaningful
exploitation once we have control of RIP:
first, to utilize a ROP chain; second, to
execute somewhere existing in memory.
​ First, regarding a ROP chain
approach, we found this to be impossible
within our time frame due to the fact that
this program utilizes address
canonicalization1. This means that we are
unable to start a ROP chain because we
would need to utilize the first four bytes of

1 See Intel® 64 and IA-32 Architectures
Software Developer’s Manual section 3.3.7.1 on
Canonical Addressing

our memory address to get a gadget that
would function as a stack pivot.
Unfortunately, we have discovered that the
program will only accept input that contains
ASCII characters that are not Unicode
characters. This means that we must
provide bytes within the range 0x20 to
0x7E, inclusive. Due to address
canonicalization, the first and second bytes
must be either 0x00 or 0xFF, both of which
are outside of those bounds.
​ Then, that leaves us with the
approach of finding and executing a
memory address. Because all memory
addresses in this program must be
canonicalized, that is not a problem in this
approach. However, we do still need to find
an address where every byte is within our
ASCII bounds. After running the command
“info proc mapping” in gdb after the dynamic
libraries were all loaded in, we found that
there were no memory locations that were
both executable and within our bounds, so
we were unable to find a valid memory
address.

Mitigation, a Possible
Solution

// Convert only single-byte characters
in the Unicode string to a char string
void UniToStrForSingleChars(char *dst,
UINT dst_size, wchar_t *src)
{
 UINT i;

 // Validate arguments
 if (dst == NULL || src == NULL) {
 return;
 }
 //MITIGATION: if the size of input
is greater than size of tmp,
 //... then cap input at sizeof(tmp)
 UINT writeLength;

https://cdrdv2.intel.com/v1/dl/getContent/671200
https://cdrdv2.intel.com/v1/dl/getContent/671200

 UINT srcLength = UniStrLen(src) +
1;
 if (srcLength > dst_size) {
 writeLength = dst_size;
 } else {
 writeLength = srcLength;
 }

 for (i = 0; i < writeLength ; i++)
 {
 wchar_t s = src[i];

Our proposed solution to the buffer overflow
exploit. The idea behind it is if the size of
the input given in the function
UniToStrForSingleChar is greater than the
size of tmp (what our exploit has been built
off of), then adding a checker to cap the
actual size of the input given at sizeof(tmp)
would stop the buffer overflow from
happening, since there would now be a cap
that cannot be overflowed past as easily.

Contributions

Researchers
Jordan Day selected the CVE target.
Alexandra Kotsinyan created the virtual
machines and exploit environment for the
group. Shanzay Khan did exploit research
on SoftEtherVPN and stack overflow bugs.
Jordan Day did the initial reversing of the
program and the exploit development.
Shanzay Khan and Jordan Day wrote the
paper report (equal contribution).
Alexandra Kotsinyan wrote the mitigation.

Acknowledgements
This report is made with thanks to Drake C.,
who found the vulnerability and provided a
short writeup that gave us a good starting
point. We would also like to thank Haylin
Moore, who assisted us in the reversing and

debugging process and provided us great
moral support.

https://lzydry.github.io/
https://hayl.in/
https://hayl.in/

	CVE 2025 25567: A Stack-Based Buffer Overflow on SoftEtherVPN
	Introduction
	Summary
	Target: SoftEtherVPN
	Bug: Stack-Based Buffer Overflow

	Exploit Development and Execution
	Program Flow
	Control of RIP

	Limitations
	Mitigation, a Possible Solution
	Contributions
	Researchers
	Acknowledgements

	

